ar X iv : 1 20 5 . 48 43 v 2 [ m at h . O C ] 2 9 Ja n 20 13 Discrete Direct Methods in the Fractional Calculus of Variations ∗
نویسندگان
چکیده
Finite differences, as a subclass of direct methods in the calculus of variations, consist in discretizing the objective functional using appropriate approximations for derivatives that appear in the problem. This article generalizes the same idea for fractional variational problems. We consider a minimization problem with a Lagrangian that depends on the left Riemann– Liouville fractional derivative. Using the Grünwald–Letnikov definition, we approximate the objective functional in an equispaced grid as a multi-variable function of the values of the unknown function on mesh points. The problem is then transformed to an ordinary static optimization problem. The solution to the latter problem gives an approximation to the original fractional problem on mesh points.
منابع مشابه
ar X iv : m at h / 06 11 81 9 v 2 [ m at h . D G ] 1 2 Ja n 20 07 EQUIVARIANT AND FRACTIONAL INDEX OF PROJECTIVE ELLIPTIC OPERATORS
In this note the fractional analytic index, for a projective elliptic operator associated to an Azumaya bundle, of [4] is related to the equivariant index of [1, 5] for an associated transversally elliptic operator.
متن کاملar X iv : 0 90 6 . 48 35 v 1 [ m at h . O C ] 2 6 Ju n 20 09 The Complex Gradient Operator and the CR - Calculus
متن کامل
ar X iv : m at h / 06 01 47 5 v 2 [ m at h . PR ] 2 9 Ja n 20 07 Isoperimetry between exponential and Gaussian
We study the isoperimetric problem for product probability measures with tails between the exponential and the Gaussian regime. In particular we exhibit many examples where coordinate half-spaces are approximate solutions of the isoperimetric problem.
متن کاملar X iv : m at h / 03 06 23 5 v 1 [ m at h . D G ] 1 6 Ju n 20 03 GEOMETRIC CONSTRUCTION OF MODULAR FUNCTORS FROM CONFORMAL FIELD THEORY JØRGEN
We give a geometric construct of a modular functor for any simple Lie-algebra and any level by twisting the constructions in [48] and [51] by a certain fractional power of the abelian theory first considered in [32] and further studied in [2].
متن کامل